Measurement News

July 2002
Issue \#114

Pete Riegel toggling the wind gauge at the end of a calibration ride. See article about wind measurement inside.

\#114 - JULY 2002

Editor: Pete Riegel - 3354 Kirkham Road -
Columbus, OH 43221-1368
Telephone: 614-451-5617 (home, not after 10 PM Eastern time)
FAX: 614-451-5610 (home)
Email: Riegelpete@aol.com

Subscription cost:

MN is sent free to RRTC officers and certifiers, and AIMS/IAAF measurers. Others may obtain MN by sending $\$ 20$ (for a one year subscription - six issues) to Pete Riegel.

Course lists for individual states may be obtained via email, free. Contact Pete Riegel at: Riegelpete@aol.com

Deadlines

Material intended to be included in the September 2002 issue must be in the Editor's hands by August
24. Next issue will be mailed in early September.

ONLINE MEASUREMENT FORUM

All it takes to become a subscriber is access to email. Simply send to MNForum@aol.com with "Subscribe MNF" in the subject heading box, and you will be added to the list. Postings on any subject related to measurement are also welcome at the same address.

RRTC CHAIRMAN - Mike Wickiser 2939 Vincent Rd - Silver Lake, OH 44224
Phone/fax: 330-929-1605
Email: MikeWickiser@neo.rr.com

ROAD RUNNING TECHNICAL COUNCIL

Founder.
Chairman.
Vice-Chairman (East)
Vice-Chairman (West)
Registrar of Courses.
Webmaster/Secretary.
MNForum.
Validations.
Finish Lines. \qquad
Editor, Measurement News. \qquad
RRCA Representative. \qquad
Road Running Info Center Rep.
Athlete Representatives \qquad
National Officer Liaison
Regional Certifiers.

Ted Corbitt Mike Wickiser Paul Hronjak Tom McBrayer Karen Wickiser Bob Baumel Jim Gerweck Doug Loeffler David Katz Pete Riegel Carl Sniffen Basil/Linda Honikman Carol McLatchie, Dan Dillon Bill Roe See list in this issue.

ABOUT MEASUREMENT NEWS

Measurement News (MN) is the newsletter of the Road Running Technical Council (RRTC) of USA Track \& Field (USATF). MN is our way to talk to one another, so that we all know what's going on.

MN is also sent to many foreign measurers associated with AIMS and IAAF, who are also invited to participate in the dialogue.

MN is published bimonthly beginning in January (six issues per year).
If you wish to reproduce or report on anything in MN, go ahead, but an attribution would be appreciated.
MN wants to make road course measurement as good as it can be. All opinions and grievances are solicited. No cows are sacred. If you have a new measurement technique, or if you think things should be done differently, send in your contribution to MN. Your opinion will be given space. Nothing changes until somebody tries!

Electronic copy or clean typed material is most welcome, but send what you can.

MEASUREMENT NEWS

Issue \#114 - July 2002

$$
* * * * * * * *
$$

Chairman's Clatter - From Mike Wickiser

WOW, measurements have taken off! This issue's current listing has 302 new courses. To quote Tom McBrayer, "My mail box is never empty." With that level of certification activity, the work on scanning course maps for posting on the Internet has slowed a bit. Never fear, a new scanner is sitting next to my computer. Being able to scan maps without shipping the files off to the national office raises my comfort level. It also puts the workload on Karen and me to get the files scanned. Another project is the search engine for the RRTC web site. The code has been written for this and it is ready to be tested but I have not had opportunity to work with it as yet. Rotator cuff repair will have me sidelined for a few months. During my recuperation I plan on using the time to tackle these two projects.

As RRTC Chairman I sometimes get called upon to check up on a course certification application. This usually happens when a measurer is concerned over the time since he or she sent the application to their certifier. Two such courses are in a lengthy process of getting certified right now. In each case the measurer is concerned about the time it has taken. In each case, the primary reason for the delay is the measurement information and map are incomplete. My reason for bringing this up is to emphasize the importance for all certifiers to maintain a prompt turn around time. Generally a one-week turn on either a completed certificate or on a request for additional information is the acceptable standard. If the measurer drags his feet the hold up is due to his lack of action, not the certifiers. In each of these cases, the certifier made contact and was working with the measurer. The measurer just didn't understand the need for complete accurate measurement information and a good quality map.

My point is to remind certifiers to keep in touch with measurers when there are questions about a measurement. At some point in time, if the measurer doesn't respond consider returning the measurement package with a list of information that is needed to get the course certified.

A NOTE FROM SOUTH AFRICA

Pete,
Just picked up your recent mailing and perhaps I've got something for you -- Attached is a pic of me measuring the Mkuse Game Park 15km last weekend - in the back ground you can see an elephant - This is run through a sugar cane farm and then into a Game reserve which amongst many other animals, birds, snakes has all of the big five except lions. but it does have ostrich!

When we started measuring (using a mountain bike as it is all on dust roads - I only issue an off road certificate which states it is measured using the 'principles' of the IAAF measurement) - we were looking at a 15 km and of course started from the finish which is an amazing thatched lodge with swimming pool, bars etc etc in the game park. It's a very scenic course and flat but with a dam and a canal and some great spots along the route As we got to the start it was clear that we were going to be some distance short of the planned start point which was a petrol station in a little 'dorp' (town) called Mkuse.

Enroute ostriches
The problem is that there is nothing either side of this town for about 20 km - so we carried on measuring and stopped at the end of the forecourt entrance - total distance 16.09 km -- So we have a 10 miler - why? Because that is what it is!! And the race is set to be called -- 'the Mkuse big 4 and one dam ostrich 10 miler' -- You see there is one ostrich there that chased one of the rangers and gave such a kick that it's probably one of the most 'dangerous' animals on the game park.

You have previously used photos from Soweto, Durban, a Mountain pass and now (possibly) a game farm -- although we don't get many international opportunities here, the big benefit of Africa is that there is always something new and special ---- Anyone looking for a cheap exciting and warm weather holiday would be hard pressed to find a better location and if they are over on 17 August they should put this race into their diary.

Regards, Norrie Williamson

New Counters \& New Life for Old Counters

After two years of testing and measuring, and thanks largely to the assistance of Paul Oerth who is kindly supporting this endeavour, cable-driven counters are now available for purchase.

Here are the specs:

- 5-digit or 6-digit Veeder-Root counters available
- cable measures 73 cm in length
- axle drive yields 23.6363 ... counts per revolution
- axle drive can be fastened to spokes by a zip tie or wire

- two Velcro straps included

I will also refurbish Jones Counters and Jones-Oerth Counters for a little more than half the price of a new one (the only requirement is that the Veeder-Root counter must be in good working condition).

Prices in U.S. dollars are as follows (includes postage for North American orders):
New cable-driven counter $\quad \$ 110.00$ (5-digit counter) $\quad \$ 120.00$ (6-digit counter) Refurbishing of Jones or Jones-Oerth Counter $\$ 45.00$ (Jones-Oerth model) Refurbishing of Jones or Jones-Oerth Counter $\quad \$ 65.00$ (cable-driven model)

Please write your name or initials on the bottom of the Veeder-Root counter if you wish to get your counter refurbished and ship to the address below. Cheques or money orders accepted in U.S. funds. Include your phone number, email and shipping address. Please indicate that the contents shipped are a sample to avoid paying the Canadian duty on your own counter. Note: Payment in advance is required.

Contact:

Laurent Lacroix
131 Sunnyside Blvd.
Winnipeg, Manitoba
R3J 3M1
CANADA
Ph. (204) 832-2301

Email: llacroix @ mb.sympatico.ca

COMMENTARY RECEIVED ON MEASURING WIND DURING THE RACE - MAY MN

From Norrie Williamson:

MMM interesting - I certainly like the principle - my initial questions / comments would be:

Surely the fan requires to be in free airflow to allow tail and head winds to be 'measured' - this would mean a rig that sat positioned above the rider as the rider would have a 'masking' effect on the tail wind - alternatively since it is the tail wind that we are actually concerned with (no one queries a race into a headwind) position the fan more to the rear on a carrier

I agree with you on the calibration - and am not sure that there is a lot of merit in getting too tangled up in this as I can only hear some of our more mathematical types producing reams of MNF forums on what should in the end become a fairly clear cut situation - (remembering that this only becomes relevant WHEN a 'best / record) is under consideration (what \% is that) and one would expect that the co-incidence of that with a border line case to be also a \% of probability - So my concern would be over the
'tolerance' allowed on the measurement of wind aid

Do we say as soon as you total length versus your wind length become negative that wind aid was present? Or is there an allowance / SCPF? To be included as well?

How about linking the moving reading with stationary readings at certain points? The question then becomes should these points be say every $1 / 6$ th point on the course (allows for different race lengths) - (of course we need some info in how long such a reading takes and hence how far ahead the bike must be if it must always be ahead of the race leader) or do we say readings must be at change of route direction at beginning (or end or middle) of long stretches in one-direction.

Going back to the masking effect of the rider, - would this be different from the masking / shielding effect of a race pack IF THERE IS A LEAD GROUP - but then I would say it should always be considered that the runner is a LONE runner and therefore has benefit of full tail wind. (as we develop things we can improve on this)

In track we measure the peak wind as I understand it even although it may gust - are we getting too complicated for the initial set up by doing more than several stationary readings on stretches of long straight running. My point being that even an a to b course that has several turns and twists may not deliver real benefits to the runner because of gusting effects and swirling from the adjacent buildings - the real benefits come from longer straights which I guess need to be about 500 m or more.

Also what about other measuring devices - now that they have cat eyes with altitude etc is there nothing with wind speed or wind chill factor that could be used ---

I am not sure that the cost is actually too big a factor - as this will be applied in 'general' only to races where it is worthwhile breaking a record - i.e. incentive money and top athletes (again do age group runners actually get great benefit from tail wind if race numbers are large - perhaps but at [present they already accept that they can not attempt a record on an A to B course - what we are talking about is trying to improve this situation and that might mean gradual steps) thus to protect or provide such records the cost of say 'flying in' or buying a state or national wind measurement machine may be a nominal amount on the race costs. I feel the first thing is to solve the problem adequately and then to look at the cost implications more closely. If we then find the cost is too much we can look for alternatives bearing in mind all the information we will find from trying to get an 'acceptable method of measurement'

These are literally 'off the top of my head' thoughts and sorry they are not in a more structured format - I look forward to your comments and responses Kind regards norrie

Pete's response to Norrie:

I have not worried about shielding from a tailwind as my riding speed on all runs is 12 mph , or $5.4 \mathrm{~m} / \mathrm{s}$. Thus, except on horrendously windy days, I will always be riding into the apparent wind. For real accuracy an anemometer is supposed to have an unimpeded air path both entering and exiting the instrument. I have a clear path up front, but I am behind it, and I am sure there is some effect from the air "piling up" against me. The magnitude of this is uncertain.

I don't have much interest in arguing about how much wind should be allowed for. At present, the Road Running Information Center (RRIC) has, to my knowledge, dealt with wind readings from only a very few races - principally New York City Marathon and the Crescent City Classic (10 km). Crescent City has supplied photos taken from the lead car that show wind direction against balloons or flags. I think, with NYC, that RRIC has used weather reports. While RRIC was principally responsible for the wind-aid escape clause in our rule, the rule makes RRTC the one to decide how the wind aid is to be determined. I'd prefer to see the clause eliminated.

I am interested in seeing whether we can do a decent job of measuring wind, and what sort of accuracy we can expect. I am attaching my data file so far. My methodology is simple I take 4 rides back and forth over a 1000 foot calibration course. I start a few hundred feet back from the end, get up to 12 mph speed, and toggle the meter as I pass the end mark. Continue at 12 mph and toggle again at the other end. Record the reading and do it three more times.

It would be better if I had an exact time for each run, but I have only two hands, so the 12 mph approach will have to do.

As you will see from the graph at the end of the file, the average readings are reasonably consistent.

Although the length of the calibration course is 1000 feet the average wind reading is at present 760. Maybe this is an effect of body shielding behind the instrument, maybe it's just the way the instrument works in this setup. In any case, I scale up the readings by $1000 / 760$ (or whatever the average for the run is) and call that the measured wind speed. Subtract the bike speed and you have the wind.

I don't expect the readings to change much as I go on with the experiment, and I am beginning to rough out the writeup. Yesterday was very windy, and I went out all set to get a whopping result, but the main wind component was crosswise from my direction of riding, so the results didn't show any great net effect.

Variability of readings is due to both errors in maintaining 12 mph and to the wind changing speed over the 5 minute measuring period. I think I do a good job at 12 mph . All runs are 12 mph for 80 percent of the time, with acceleration or deceleration if speed hits 11 or 13. I have a feel for the speed now, and the results show reasonable consistency. I picked 12 mph because it's 5 minute miles, close to top racing speed.

Anybody who rides ahead of a real race will not maintain perfectly consistent speed, and this will have to be factored in to whatever results they get.

Have fun with the data. I am tossing in a picture as well.

Best regards, Pete

From Roger Gibbons:

An Interesting article on the miner's anemometer.
Unless I am missing the point, could not calibration be done in an indoors shopping mall or similar. Here the air would be either still or constantly moving in both speed and direction. Carried over a measured distance in both directions in this environment would surely give the accurate readings you require.

Without spending a long time considering the pros and cons, it would appear to be the perfect solution in overcoming the 'funnelling' effects in streets with high buildings. In such conditions the wind direction appears to change around every corner!

I would think that the cost would not necessarily be prohibitive. Certainly in UK where we work through County committees, we have purchased clocks in the past, to be used by all affiliated clubs on their race day. A similar arrangement could be adopted for the anemometer.

I happen to think that official World Records are neither desirable or necessary, but if they are to exist then certainly
wind direction and speed must be measured and taken into account.

Regards,
Roger Gibbons

Pete's response to Roger:

I agree with you as far as calibration goes. A windless indoor venue would be nice, if available. It may not be necessary unless we are looking for great precision. So far I have done 14 trials over a 1000 foot calibration course, riding at 12 mph . Each trial is two rides each way within a 5 minute period. The average reading is 763 feet, with maximum of 797 and minimum of 745 . This is not too bad for some degree of accuracy. On my 14 trials I have not yet found a wind in excess of $2 \mathrm{~m} / \mathrm{s}$. Highest I've found is 1.5 .

I have been out on some very windy days, but my street runs north/south, and that component has never been large. One day it will be. In the meanwhile I'll keep riding. I have all I need to produce an article for next MN , but will continue to fill the graph.

I believe our US rule which leaves a loophole for wind measurement on courses with great separation is not good. I'd prefer to see no loophole, just firm limits on drop and separation. Still, until the loophole is closed, there may be some use in wind metering. And it's fun to take a look.

Our rule does not set any particular limit on wind aid. Instead it refers to "significant" wind. This is weak, but as we don't have an ironclad way to determine wind it may have to do. I think it tempts the record-keepers into accepting marginal performances, but cannot back up this statement.

I've also heard that certain stadia, at certain times, can contain swirling winds which could create a head-or-tail wind all the way around the track. I don't think this wind, if it exists, would be anywhere near $2 \mathrm{~m} / \mathrm{s}$. On my windiest bike rides, I have noticed a large difference in riding effort between headwind and tailwind at 12 mph , which is close to road running speeds.

As for official world records, the media are going to call them that anyway, and if standards are applied the media may twig to the proper ones. Over 20 years we have educated ours to winnow out the nonstarters (i.e. Boston). Track \& Field has records - why not road running? People enjoy them. The 1 $\mathrm{m} / \mathrm{km}, 30 \%$ limit does not mean all record courses are equal, but it does mean none are aided in any significant way by wind or slope.

Where this study may lead I don't know, but I will kick it off and see.

If you would like to see my Excel file to date, let me know and I will send it.

From Ken Young:

Your article in the latest Measurement News was of considerable interest. What you propose would certainly make a lot more sense from a meterological standpoint than observing flags or balloons at points along the course. Really what would be most relevant would be the sum of the squares of the wind speed since this is proportional to the force experienced by a runner but such a device is probably not available at all.

You talk about calibrating this device. I think in practice that you will find any noticeable breeze at all will have enough variability to make it virtually impossible to calibrate the instrument in the manner you propose. If you have a day that is dead calm, then you might have a chance but I think you will find these instruments are fairly reliable and good enough for the proposed use without calibration. In addition, the goal is not a highly precise measurement of the wind but rather simply an assessment as to whether there was a net tail wind. The instrument without calibration should be good enough to provide this.

Best wishes,
Ken

Pete's response to Ken:

I have done 20 trials of four rides each (2 in each direction) over a 1000 foot calibration course. I begin riding a few hundred feet back from the end of the cal course, get up to 12 mph (close to top running speed), and toggle the meter as I pass the mark. I am able to maintain between 11 and 13 mph , speeding up or coasting as the speedometer dictates. I am in the "12" range over at least 80 percent of each ride. This gives me an approximate idea of the riding time over 1000 feet.

It would be better to punch a watch as I hit the mark, but with only two hands I have not figured out how to do this. I believe what I am doing is sufficient to demonstrate the method.

So far my average reading over the 1000 feet is 762 feet, with a low of 733 and high of 797 . From the four readings gained, I can calculate a wind speed for each ride. I subtract out the average and wind up with a net wind speed. There is certainly error associated with the method, but I think I can count on being within $1 \mathrm{~m} / \mathrm{s}$ of the correct value.

Roger Gibbons has suggested that calibration could be done in a shopping center or the like, thus getting nowind conditions a bit better. I agree, but have no venue handy.

Why doesn't the meter read 1000 feet? In the coal mine, the user extends the meter at arm's length, normal to flow. Flow is unimpeded as it enters and leaves the meter. On the bike, the entering flow is clear, but the rider is just behind the meter. This is bound to have an effect on the air flow. I won't attempt any quantification here, but there is certainly an effect. Incoming flow may be affected by the presence of the rider as well. In any case, I got what I got.

I am not sure what standard RRIC uses in evaluation of wind. The balloon method, while not quantifiable, does give a clearly understood visual presentation of the circumstances. It helps if all the balloons blow the same way, but usually they don't. Crescent City has used balloons and banners, with submitted photos. The Arts Fest 15k, in Evansville, IN, has had fast times, and I think RRIC may have used weather reports, but don't really know.

I don't believe RRIC uses a zero tolerance on tailwind. I think "significant" enters the mix somewhere, but don't know.

So far I have not encountered a measured wind greater than $1.5 \mathrm{~m} / \mathrm{s}$. At my riding speed, I notice a fairly large difference in effort depending on which way I am going. A $2 \mathrm{~m} / \mathrm{s}$ tailwind is, to my way of thinking, an enormous boost. I wonder how the trackies came up with their limit. I suspect they did not want to shoot down an inordinate number of fast runs, so compromised.

I view the "wind codicil" to Rule 185 as being unfortunate. I'd rather see drop and separation limits, with no exceptions. The rule was written as a compromise, and it puts responsibility for wind determination on RRTC. Thus far we don't really have a good handle on how to do it. While what I am trying is better than balloons, I think it may require a bit more care and understanding than do balloons.

In case you are interested, I am attaching the Excel file containing my data so far. I think it shows promise, but it's early days.

Best regards, Pete

Recreation/Outdoors

Texas leads certified check

In a year that saw the number of certified road race courses across the nation hit the highest level since 1985. Texas was the leader of the pack. Texas led California and Illinois in 2001 with 159 certified courses - more than doubling its figures from just a decade ago.
"That's a tremendous number of races," said Houston's Tom McBrayer,

Running Notebook
Patti
Muck Texas state certifier and vice chairman for the Western Division of the USA Track and Field Road Funning Technical Council. McBrayer was the most active certifier in the country last year, reviewing and approving 136 road race courses. He also measured 23 courses, including the Dome Run 5K and 10 K , the Terry Fox 5 K and, in 2002, Houston's new marathon, half-marathon and four-mile race courses.
McBrayer attributes the healthy race stats, which will be published in a magazine called Measurement News in May, to those of us who enter them.
"I think the whole thing has to start with runners," said McBrayer. "They do want accuracy in a course. Nothing gets a runner's goat more than thinking you've just set a PR (personal record), but sorry, it's a short course.
"The race directors recognize this, and having a certified course is one of the things you do to have a quality race."
Of the 1,242 race courses certified in the United States last year, more than half of them were 5 K races. Coming in second in the most popular distance was the 10 K race.
Spring Challenge winds down - The Houston Area Road Runners Association has two more races in this year's 2002 Spring Challenge. Coming April 6 is the Bellaire Trolley Run 5 K , the fourth race in the series and the 5K Championship Race. The race starts at Bellaire Boulevard and Third Street at 8 am.

For information, call 713-662-8280 or register online at www.alrcusa.org/trolleyrunhtm.
The last race in the series is the Bayou Bash Relay on April 27 at Fluor-Lake Pointe in Sugar Land, near U.S. 59 South and Highway 6 . This race always brings out the best in team competition, with four-member relay teams. Each runner follows a 2.8 -mile course out and back. Categories include Open Men, Open Women, Masters Men, Masters Women, Seniors 60 plus, Mixed Open, Mixed Masters, and a new Junior Division. For more information, call 713-861-1139 or register online at www.alrcusa.org.
Triathlon season cranking up - The season for triathlons is nearly here, and if you're trying the swimming, cycling and running trio for the first time, check out the Speedo Women's Tri First-Timers' Clinic on Saturday. The free hour-long seminar, featuring advice from experienced triathletes and coaches, is held at Andy Stewart's Finish Line Sports at U.S. 59 South and Sugar Creek Boulevard (Geriand's Center). Space is limited to the first 150 , but some openings remain for the 7:30 am. session. Bone density screening will be offered. The clinic is in preparation for the April 28 Aunt Jean's Lucky Seventh Annual Speedo Women's Triathlon, a 300 -meter swim, 10 -mile bike and 3 -mile running event in Sugar Land.
Do your best - A 5,000-meter Personal Best Night is on tap this evening at the Rice University Track Stadium. Hosted by the Rice University Track and Field Team and RunSport, the third such event gives runners a chance to run a personal best with other runners of similar abilities. The slower runners (with 5 K times of 27 minutes or more) start at 6:30 p.m. Runners should show up at least a half hour before their seeded race time. For information, call FunSport at 713-524-6662.

[^0]
EXPERIMENTAL RESULTS IN WIND MEASUREMENT

By Pete Riegel

In the May issue of MN I described an anemometer that might be useful in measuring wind during a race, and promised some experimental results in future issues. I have now completed a series of experiments, and I believe they show promise.

Why measure wind during a road race? It's a problem faced only by the United States. USATF's Rule 185 applies to long distance running events. Rule 185.5 (b) says:
"The start and finish of the race must lie no more than 30% of the race distance apart as measured along the straight line between them, except when it can be shown that the average component of the wind direction at the head of the race (the lead runner) did not constitute a significant tailwind.
NOTE: A tailwind shall be deemed to be significant if it prevails consistently throughout more than 50% of the course during the race."

Responsibility for establishing the wind condition is RRTC's (Road Running Technical Council), although RRIC (Road Running Information Center) has evaluated some races based on submitted data.

When the rule was adopted, RRTC realized that some way was needed to measure wind, to some degree. Early efforts involved photographing balloons and/or banners from the lead car. While not quantitative, these photos did at least provide a sense of which way the wind was blowing. John Disley also tried this. He said:
"The problem of limiting the advantage of a 'tailwind' to a runner is important, Other means of measuring the strength of a following wind on a road course have been tried. I myself set-up wind gauges around the London Marathon course in the early 1980's. Predictably, they failed to measure correctly in the wind tunnel environment created by buildings on each side of the road. They were so badly affected by the 'traffic' - lead car, press truck, $T V$, vehicles, etc, that preceded the lead runners.

We then tried putting-out 'streamers' around the course, but although these would show direction of the wind, they too were pulled around by traffic and the wind-tunnel effect of buildings.

Others have duplicated these efforts with equally poor returns.
Actually, our couple of efforts with wind-gauges were farces. We borrowed eight from the AAA's, apart from giving spurious readings - one was stolen, one was run over by the press truck and two others were badly damaged when knocked over by enthusiastic spectators one of which was trampled to death by the runners (the machine not a spectator).

The 'ribbons' were equally subject to unenvisaged problems. When they got wet in the rain they stopped fluttering and just hung, or when working well proceded to wrap themselves around the pole they were hung from. Happy days!"

The imprecision of existing methods of wind measurement led to this trial of the integrating anemometer.
The anemometer in question is a rotary-vane anemometer manufactured by Taylor - Sybron Corporation. It once had specifications printed on an attached label, but these have worn off and are not legible. It was acquired and used during the the author's work in a West Virginia coal mine in the late 1970's, and has been sitting idle since then.

The anemometer is calibrated in feet. The idea behind it is that if air passes through the instrument at a speed of $1000 \mathrm{feet} / \mathrm{min}(5.08 \mathrm{~m} / \mathrm{s})$, a column of air 1000 feet long will pass through the meter in one minute, rotating the vanes, and at the end of the minute the meter will read 1000 feet.

The first job was to rig the anemometer to the bike. I wanted a mounting that would have some shock-absorbing capability, as the anemometer mechanism is delicate. Also, the anemometer had to be accessible to me as I rode, so that I could toggle it on and off. I came up with an arrangement of duct tape and dowels. It's far from a long-term mounting, but it lasted long enough to do the job.

I have a 1000 foot calibration course in the street in front of my house. Over the period of a month I performed a more-or-less daily series of four rides over this course.

In doing the rides, I initially chose 12 mph as a riding speed, since 5 minute miles is quite close to top-class speed, and I thought that it would mimic the probable riding speed in front of a race. I used the speedometer function on my bicycle odometer as a riding guide. It is calibrated for the size of my wheel.

To obtain a reading, I would ride beyond the end of the calibration course, turn around, and get up to 12 mph riding speed. As I passed the end mark of the calibration course I would reach forward and toggle the meter to the "on" position, and watch as the dials spun. When I reached the other end, I toggled the meter to "off" and recorded the
 feet of air that the meter indicated. The procedure was repeated 3 more times to get a group of 4 readings.

After a few weeks of data collection a clear trend had developed at 12 mph . Out of curiosity I did another series of rides, this time at a speed of 9 mph . I wanted to see whether meter performance was greatly affected by riding speed.

Each trial produced 4 readings, two in each direction. I took the average of the four to indicate the reading under no-wind conditions. This I considered to be the proper calibration figure for the trial. Here is an example of the resulting wind calculation. On May 6 , the following readings were obtained:

	Meter Reading	Average Reading
Direction	Feet	749.25
N to S	856	
S to N	636	
N to S	857	
S to N	648	

Direction	Feet	Reading
N to S	1142	1000

S to N 849
N to $\mathrm{S} \quad 1144$

S to N 865

> Adjusted Average Reading 1000

Since the calibration course was 1000 feet, and the average calibration reading was 749.25 , I multiplied all readings by (1000/749.25) to obtain "true" readings, as follows:

Now, 12 mph is a speed of $17.6 \mathrm{ft} / \mathrm{sec}(5.36 \mathrm{~m} / \mathrm{s})$, resulting in a riding time of 56.8 second per ride. Wind speeds may be calculated as, for example, 1142 feet in $56.8 \mathrm{sec}=20.1 \mathrm{ft} / \mathrm{sec}$ or $6.13 \mathrm{~m} / \mathrm{s}$. From this must be subtracted the speed of the bike, or, $6.13-5.36=0.76 \mathrm{~m} / \mathrm{s}$.

Thus the measured wind on the four rides becomes:

Direction	m / s
N to S	0.76
S to N	-0.81
N to S	0.77
S to N	-0.72

From this we see that we had a wind from the south. Averaging the four absolute values, ignoring sign, we obtain a net wind from the south of $0.77 \mathrm{~m} / \mathrm{s}$.

Chart of anemometer readings. The black triangles show the average of the four rides for each trial.		
DATA SUMMARY - READINGS IN FEET - AVERAGE OF FOUR RIDES		
	12 MPH	9 MPH
Average	762	793
Std Dev	16	30
High	797	855
Low	733	726
Number	17	15

Suppose we wanted to use this instrument during a race. Because access to the start and finish may not be possible, measurement would have to take place between a point just ahead of the start and just before the finish. The distance between the points will need to be known. Time of measurement is needed.

Our hypothetical race is 10 km . We mount the anemometer to the lead car, in a way that allows good airflow. We establish an initial point which lies 200 m after the start, and a final point 200 m before the finish. The car is initially about 70 m ahead of the start line.

The gun goes off, and the racers and lead car begin to move. As the car passes the initial point, the anemometer is started, and timing is begun. Note is kept
of the operation of the anemometer, and each time it "rolls over" (indicating 10,000 feet of air measured) the time is recorded. As the final point is reached, the anemometer is switched off and the time recorded.

At right is the hypothetical data:

Metered distance $=$		9600 m	
Time to first turnove		10 minutes	(10000 feet)
Time to second turn		21 minutes	(20000 feet)
Time to finish =		27 minutes	1620 sec
Final reading $=(10000$	5580) $=$	25580 feet	
Calibration on 1000	alibration co		304.8 meters
	Meter		
	Reading	Avera	
Direction	Feet	Read	
N to S	856	749	
S to N	636		
N to S	857		
S to N	648		
Calibration constan	9.25/304.8 =	2.4581	feet per meter
25580/2.458169 =	$\begin{array}{r} 10406 \mathrm{~m} \\ 9600 \mathrm{~m} \end{array}$	ters observed by ters actually cova	nemometer ed by anemometer
10406/1620 =	6.424 m	observed by an	mometer
9600/1620 =	5.926 m	actually covere	by anemometer
6.424-5.926 =	0.498 m	headwind	

Observations and Conclusions

This exercise, culminating in an observed $0.5 \mathrm{~m} / \mathrm{s}$ wind against the runner, exemplifies one way to measure wind during a footrace. How reliable is the final $0.5 \mathrm{~m} / \mathrm{s}$ figure? I do not have a solid grip on this. Perhaps others may care to comment. I will be happy to share my calibration data, but since it is specific to my body on my bike, it does not have universal application.

There exists no way to absolutely establish wind conditions during a road race. The best that can be done is to establish a fixed standard which is employed by all. This is what is done on the track, with a wind gauge set up at mid-track and read for a portion of the event. This may not establish the truth of the wind, but it is accepted as being good enough. If wind is to be measured in road races, a similar standard is needed. What should this standard be? There are several options:

1) Hanging banners and balloons, photographed from the lead vehicle - With proper banner design, this can give a clear picture of wind direction at a series of points along the race course. It does not quantify wind force. It is simple and easy to do, and the results may be seen and understood by everybody.
2) A series of track-type wind gauges can be set up at intervals along the course, and read as the lead vehicle passes by, and at set time intervals as the race progresses. This method covers the lead runners as well as those farther back in the pack.
3) Weather reports may be collected and wind direction established. This is weak and unreliable. It does not measure the conditions at the time and place of the race.
4) The integrating anemometer can be used. The author believes that this is the most accurate approach found to date. However, it does require skill, practice and experience to get things right.

Complications arise because different conclusions will be reached depending on the method used. All will not necessarily give the same result.

Gauging wind does require preparation on the part of the race organization, and it is almost always a waste of time, as records are rare, and when a fast time is set on a point-to-point course the wind is generally a factor. Still I have heard of three races that have employed various means of measuring wind, with records resulting.

RRIC has had to evaluate some performances based on submitted wind data. Perhaps they may be induced to share their experience.

Personal Observations

During the course of the exercise, I noticed, as I had never noticed before, the effect of wind on my riding-at-racespeed effort. In the 32 trials I never encountered a wind of $2 \mathrm{~m} / \mathrm{s}$, the limit used in athletics. However, I did experience a few $1.5 \mathrm{~m} / \mathrm{s}$ winds, and found a very noticeable difference between riding into that wind and away from it. It is not a small effect. A runner getting a $2 \mathrm{~m} / \mathrm{s}$ tailwind is getting an enormous boost. Why is the limit set so high? My guess is that a lower limit would result in an unacceptable number of fast runs being thrown out.

As I rode down my suburban street I was also struck by the way the wind changed from place to place as I rode. It was rarely a constant force opposing my motion. It varied all the time. It's easy to notice this when it is wind alone that you are thinking about while riding.

I hope others may be encouraged to contribute on this subject. I will be happy to loan the anemometer to anyone who will return it to me whole.

Kamehameha complex on track; field has some woes

By Dennis Anderson

Abvertisi Staff Writir
The new $\$ 14.5$-million cutdoor athletic complex at the Kamehameha Schools was the original site of this weekend's state high school track and field championships.
But the meet was moved to Mililani High School be-
cause the finish line of the track at Kamehameha was a fraction of an inch short and the new field's drainage did not work.
Though the track was fixed in time for the state meet and a "remediation" program is under way to im prove drainage of the field, the event will still take place at Mililani.

The Kamehameha complex is expected to be acceptable for use in August, more than six months after the original date of expected completion.
When it is finished, the Kamehameha facility will be "the No. 1 high school track and field/football/soccer

See COMPLEX, C3

The track was found to be a bit short after an eyeball inspection by consultant Don Paige.

Complex: Facility draws praise

FROM PAGE C1

complex in the country," said Don Paige, consultant on the Kamehameha track and 150 others in the U.S., including the Olympic Training Center in San Diego.
"You never see a high school facility like this," Paige said. "Lots of facilities have really nice grass fields, lots have nice tracks, some have nice stadiums, some have nice lights, some have nice scoreboards, some have good press boxes, some have nice architectural features.
"But you won't find another facility in the U.S. that has all those elements, as the Kamehameha complex does."
It was Paige, a member of the 1980 U.S. Olympic track team, who discovered the error in measurement at Kamehameha.
There is no tolerance in track and field for things to be shorter than the distance. A 100 -meter course cannot be 99.999 meters," Paige said. "Dr. Chun (Michael Chun, the schools' president) said that 'if any world records are set here, we want to be certain they will be approved.' "

Because of the error in striping the track, the contractor, Southwest Recreational Industries of Texas, had to lay down an additional half-inch layer of

Rekortan polyurethane surface. then measure and paint it again, Paige said.
'You can't paint red over the white lines or grind them off, you have to resurface it," Paige said. "It's like when you find a flaw in a new sofa; you have it recovered."
"Line striping is a true art," Paige said. "There are only a dozen people in the U.S. who can do it. ... It was very windy when the track was striped."
One of the Kamehameha managers closest to the project said the track appeared to be less than a quarter of an inch short.
"It looked like the paint bled over; the edge wasn't sharp enough. It was like when you tape a wall and paint, then pull the tape off and find the paint has bled under the tape a little bit and the edge is fuzzy. Don Paige said it was unacceptable," said the official, who spoke on condition of anorymity.
Fixing the drainage has been a bigger project.
"It is a process of aeration and amending the existing soil mixture with additional sand to improve the drainage of the field," Kamehameha spokesman Kekoa Paulsen said.

When it's done, Paige said, "it coull pour rain at 2 p.m. and you could start a football or soccet
game at 3 p.m. with no water on the field."

Fixing the track and field will not cost Kamehameha any additional money, Paulsen said. All the work was and is being done at the contractors' expense.

Tons of earth were moved around and part of a mountain carved away to make room for the complex, half of which is on the site of Mawaena Field. There will be seating for 3,000 people, which is not sufficient for a major Interscholastic League of Honolulu football game but adequate for most crowds.

The ewa view will be so good it will be hard to concentrate on the football game," said Walter Thoemmes, manager of facility design and management for the Kamehameha Schooks.

SECTION C • honoluluadvertiser.com/sports 大t
THURSDAY • MAY 9, 2002

Dear Pete.
Here is an article froe our local newspaper that I thought you might enjoy.
When I read the vords: "The track was found to be a bit short after an eyeball inspection by Don Paige," I Imediately thought, " Eureka! No more laborious and sueaty efforts to go chrough the procedures to measure a running course."

Maybe you can run down this Don Paige and add him to the RRTC comittee. ,
Hope all goes well with you and the family. Enjuyed your last plece about meanuring vind during a race.

```
Alohas,
Ton
(Tom Ferguson, former Hawaii certifier)
Tun
```

USATF/RRTC CERTIFIED COURSE LIST
New Entries, May - June 2002
Closing Date June 25, 2002

DISTANCE	COURSE ID	ST	LOCATION	COURSE NAME/RACE	m/km DROP	$\begin{aligned} & \text { pct } \\ & \text { SEP } \end{aligned}$	MEASURER		REPLACES	
5 km	AL 02004 JD	A	Huntsville	Cotton Row 5k Run	0.0	3	J	DeHaye		
10 km	AL 02005 JD	A	Huntsville	Cotton Row Run	0.0	1	J	DeHaye	AL	98021\&98023 JD
5 km	AL 02006 JD	A	Birmingham	Fireman's 5k For MDA	23.8	45	R	Melanson		
5 km	AL 02007 JD	A	Mobile	Crime Prevention 5k	0.0	5	L	Mattics		
5 km	AL 02003 RH	A	Tuscaloosa	Sugar Chase 5k	0.0	3	R	Melanson		
5 km	AR 02005 DLP	A	Vilonia	Viloniafest 5k	0.1	1	D	Potter		
10 km	AZ 02005 ETM	A	Tucson	Cinco de Mayo 10k	0.6	1	T	LaBlonde		
Cal	CA 02001 KY	A	Weott	Weott Ave of Giants 301.515m	0.0	100	K	Young		
42.2 km	CA 02002 KY	A	Weott	Avenue of the Giants	0.0	0	K	Young	CA	84040 CW
21.1 km	CA 02003 KY	A	Weott	Avenue of the Giants	0.0	1	K	Young		
10 km	CA 02004 KY	A	Weott	Avenue of the Giants	0.0	1	K	Young	CA	92005 CW
5 km	CA 02019 RS	A	Sacramento	Sacramento Race for the Cure	0.2	12	D	Thurston	CA	01030 RS
5 km	CA 02001 TK	A	Redwood Shores	5k Foot Pursuit	0.0	3	T	Knight		
5 km	CA 02002 TK	A	Mountain View	Race For Literacy 5k	0.0	0	T	Knight	CA	01008 TK
5 km	CO 02002 DP	A	Denver	Race to Stop Global Warming	0.0	1	D	Poppers	CO	01003 DP
8 km	CO 02003 DP	A	Denver	Race to Stop Global Warming	0.0	1	D	Poppers		
5 mi	CO 02004 DP	A	Denver	Cherry Creek Sneak	0.5	10	D	Poppers	CO	00011 DP
5 km	CO 02005 DP	A	Denver	Cherry Creek Sneak	0.5	16	D	Poppers	CO	00012 DP
42.2 km	CO 02006 DP	A	Fort Collins	Old Town Marathon	8.2	69	B	Durden		
21.1 km	CO 02007 DP	A	Fort Collins	Old Town Half Marathon	3.9	76	B	Durden		
Cal	CO 02008 DP	A	Georgetown	Argentine Road 1000 ft .	0.0	100	G	Markle		
5 km	CO 02010 DP	A	Highlands Ranch	Race Against Time	0.0	3	D	Poppers		
42.2 km	CO 02011 DP	A	Denver	Jesus Run	0.0	0	A	Stephenson	CO	01012 DP
5 km	CO 02011 DP	A	Fort Collins	Coopersmith's Father's Day	0.0	3	J	Lonsdale		
21.1 km	CO 02012 DP	A	Denver	Jesus Run	0.0	0	A	Stephenson	CO	01013 DP
5 km	CO 02013 DP	A	Denver	Jesus Run	0.0	1	A	Stephenson	CO	01014 DP
5 km	CO 02014 DP	A	Denver	Stadium Stampede	0.0	4	D	Poppers		
2.7 mi	CO 02015 DP	A	Denver	Run the Rapids	0.0	2	D	Poppers		
5 km	CT 02005 DR	A	Newton	HVS 5k Road Run	2.4	5	K	Platt		
5 km	CT 02006 DR	A	West Hartford	Ryka 5-K	0.0	5	D	Reik		
10 km	CT 02006 DR	A	West Hartford	Ryka 10-K	0.0	2	D	Reik		
5 km	CT 02007 DR	A	New Britain	CT Race for the Cure	-0.6	1	T	Buckley	CT	94001 DR
5 km	CT 02008 DR	A	Goshen	Miles Conquer Myeloma 5k	0.0	0	W	Graustein		
21.1 km	CT 02009 DR	A	Barkhamsted	People's Forest Half Marathon	0.0	4	D	Bolt		
5 km	CT 02010 DR	A	Norwich	Rose City 5 km	2.0	1		GuidoBros		
Cal	CT 02501 DR	A	Norwich	Lawler Lane 1000 FT Calibration	0.0	100		GuidoBros		
5 km	DC 02001 RT	A	Washington	Anacostia Park 5k	0.0	0	R	Thurston		
5 km	DC 02010 RT	A	Washington	Signs of Spring 5k	0.0	0	R	Thurston		
10 km	DC 02012 RT	A	Washington	Sallie Mae 10k	0.0	0	R	Thurston		
42.2 km	GA 02003 WC	A	Macon	Cherry Blossom Marathon	0.0	0	H	Squires		
5 km	GA 02004 WC	A	Savannah	Isle of Hope	0.0	0	C	Stratton		
10 km	GA 02005 WC	A	Columbus	Celebrity Classic	0.0	64	D	Koepfer		
10 km	GA 02006 WC	A	Augusta	Fort Gordon SCRA	0.0	0	T	Crute		
5 km	HI 02023 PR	A	Honolulu	Race for the Cure	0.0	7	R	Pate		
3.909 mi	IA 02002 KU	A	Eldridge	Moonlight Chase	0.0	2	K	Ungurean		
5 km	IA 02002 MF	A	Des Moines	Evening Glow	-0.1	0	C	Voss		
8 km	IA 02003 MF	A	Des Moines	Loop the Lake 8 km	0.0	0	C	Voss	IA	01002 MF
5 km	IL 02009 JW	A	Oakwood Terrace	Fitness Center 5k	0.0	5	C	Hinde	IL	01015 JW
5 km	IL 02010 JW	A	Chicago	Y-Me 5k	0.0	8	C	Hinde	IL	97027 JW
5 km	IL 02011 JW	A	Chicago	Bastille Day 5k	0.0	4	C	Hinde	IL	95045 JW
5 km	IL 02012 JW	A	Naperville	Spring Ahead 5k	0.0	1	J	Wight	IL	00003 JW
5 km	IL 02013 JW	A	South Barrington	South Barrington Foundation Run	0.0	0	C	Hinde		
5 km	IL 02014 JW	A	Des Plaines	Maryville 5k	0.0	4	C	Hinde		
5 km	IL 02015 JW	A	Chicago	Run For The Zoo 5k	0.0	4	C	Hinde	IL	90030 JW
10 km	IL 02016 JW	A	Chicago	Run For The Zoo 10k	0.0	2	C	Hinde	IL	90032 JW
10 km	IL 02017 JW	A	Woodstock	Woodstock Challenge 10k	0.0	1	C	Hinde	IL	98030 JW
5 km	IL 02018 JW	A	Warrenville	D.A.R.E. Family Challenge	0.0	0	C	Hinde	IL	01013 JW
8 km	IL 02019 JW	A	Chicago	Running with the Bulls	0.0	2	J	Knoedel		

DISTANCE	COURSE ID	ST	LOCATION
5 km	IL 02020 JW	A	Lisle
10 km	IL 02022 JW	A	Rockford
42.2 km	IL 02023 JW	A	Chicago
10 mi	IL 02024 JW	A	Chicago
21.1 km	IL 02025 JW	A	Saint Charles
20 km	IL 02026 JW	A	Chicago
4 mi	IL 02027 JW	A	Palos Park
5 km	IL 02028 JW	A	Orland Park
5 km	IL 02029 JW	A	Naperville
5 km	IL 02030 JW	A	Riverside
8 km	IL 02031 JW	A	Evanston
5 km	IL 02032 JW	A	River Forest
10 km	IL 02033 JW	A	Lake Forest
5 km	IL 02034 JW	A	Springfield
5 km	IL 02035 JW	A	Morris
5 km	IL 02036 JW	A	Oak Park
5 km	IL 02038 JW	A	Hoffman Estates
10 km	IL 02039 JW	A	Chicago
8 km	IL 02040 JW	A	Chicago
5 km	IL 02041 JW	A	Crystal Lake
10 km	IL 02042 JW	A	DeKalb
5 km	IL 02046 JW	A	Palos Heights
1.195 km	IN 02005 MW	A	Evansville
20 km	IN 02005 MW	A	Evansville
5 km	IN 02006 MW	A	Evansville
10 km	IN 02007 MW	A	Evansville
15 km	IN 02008 MW	A	Evansville
5 km	KS 02009 BG	A	Olathe
10 km	KS 02010 BG	A	Olathe
42.2 km	KS 02016 BG	A	Olathe
5 km	KS 02017 BG	A	Overland Park
Cal	KY 02021 PR	A	Owensboro
21.1 km	MA 02004 RN	A	Westfield
5 km	MA 02005 RN	A	Wakefield
21.1 km	MA 02006 RN	A	Wakefield
10 km	MA 02007 RN	A	Westford
5 km	MA 02008 RN	A	Westford
10 km	MD 02001 JS	A	Bethesda
10 km	MD 02002 JS	A	Columbia
5 km	MD 02003 JS	A	Patuxent
10 km	MD 02004 JS	A	Ellicott City
5 km	MD 02005 JS	A	Gaithersburg
5 km	MD 02005 RT	A	Bethesda
10 km	ME 02001 WN	A	Biddeford
5 km	ME 02002 WN	A	Biddeford
5 mi	ME 02003 WN	A	Gardiner
5 km	MI 02003 SH	A	Detroit
8 km	MI 02004 SH	A	Lake Orion
Cal	MI 02005 SH	A	Ortonville
8 km	MI 02006 SH	A	Jackson
21.1 km	MI 02007 SH	A	Dexter
5 km	MI 02008 SH	A	Ann Arbor
25 km	MI 02009 SH	A	Grand Rapids
5 km	MI 02010 SH	A	Grand Rapids
21.1 km	MI 02011 SH	A	Kalamazoo
5 km	MI 02012 SH	A	Jenison
10 km	MI 02013 SH	A	East Grand Rapids
5 km	MI 02014 SH	A	East Grand Rapids
1 mi	MI 02015 SH	A	Traverse City
5 km	MI 02016 SH	A	Northville
8 km	MI 02017 SH	A	Lincoln Park
5 mi	MI 02018 SH	A	Grandville
10 km	MI 02019 SH	A	Traverse City
42.2 km	MI 02020 SH	A	Traverse City
5 km	MI 02021 SH	A	Holland
5 km	MI 02023 SH	A	Flint

COURSE NAME/RACE	m/km DROP	pct				
		SEP		ASURER	REP	ACES
Run For Education	-0.3	5	C	Hinde	IL	01027 JW
OSF Heritage Run	0.0	2	N	Yarger	IL	00018 JW
Lakeshore Marathon	0.0	0	J	Wight		
Lakefront 10k	0.0	1	J	Knoedel		
Fifth Third Bank Half Marathon	1.3	38	J	Knoedel		
Chicago Distance Classic	0.0	0	J	Knoedel	IL	01077 JW
Turkey Trot	0.0	2	C	Hinde		
Band On The Run Run	0.0	2	C	Hinde		
Run For Reading	0.0	3	C	Hinde		
Riverside Independence 5k	0.0	1	J	Wight	IL	91020 JW
Race To The Finish	0.0	2	J	Knoedel		
Dominican Dash	0.0	8	C	Hinde		
Running With Angels	0.0	3	C	Hinde	IL	97010 JW
Scholastic Challenge 5k	0.0	0	R	Ginter		
Cornfest 5k Fun Run	0.0	2	C	Hinde		
Turtles Run	0.0	6	C	Hinde		
Unity Day 5k	0.0	0	J	Knoedel		
Run For The Zoo 10k	0.0	2	C	Hinde	IL	02016 JW
All American 8k	0.0	0	J	Knoedel		
Lippold Park 5k	0.0	0	J	Knoedel		
DeKalb Cornfest 10k	0.0	1	J	Wight	IL	94042 JW
George's Jog	0.0	2	C	Hinde	IL	01028 JW
Wesselman Park RW Loop	0.0	0	D	Swonder	IN	99015 MW
Wesselman Park 20k RW	0.0	1	D	Swonder	IN	00004 MW
Wesselman Park 5k RW	0.0	4	D	Swonder	IN	99013 MW
Wesselman Park 10k RW	0.0	3	D	Swonder	IN	99014 MW
Wesselman Park15k RW	0.0	1	D	Swonder	IN	00003 MW
Heart and Sole Classic	0.0	1	C	Pearson		
Heart and Sole Classic	0.0	1	C	Pearson		
NAIA Marathon	-0.1	1	L	Joline		
Beat the Heat	0.0	1	L	Joline		
Sutherland Road 3663 ft .	0.0	100	H	Roberts		
Oleksak Lumber Spring H-MAR	0.0	1	R	Arsenault		
Massachusetts Law Enforcement	0.2	7	J	Kuo		
Massachusetts Law Enforcement	0.1	2	J	Kuo	MA	01005 RN
Westford 10k Road Race	-0.8	8	R	Nelson		
Westford 5k Road Race	-1.7	15	R	Nelson		
W.J. Booster 10k	0.0	0	J	Sissala	MD	00003 JS
Clyde's 10k	0.0	2	R	Lake	MD	93004 JS
NPC - 50 Relay Race	0.0	0	J	Sissala		
Columbia Triathlon 10k Run	-0.3	3	R	Lake		
Friends of lan 5k	0.0	3	P	Quinn		
Mark's Azalea Festival 5k Run	1.0	5	R	Thurston		
La Kermesse Franco-Americaine	-0.2	34	R	Fitzpatrick		
La Kermesse Franco-Americaine	0.2	3		Fitzpatrick		
Gardiner Common 5 Miler	0.4	3	G	Roy	ME	85046 GN
Race For The Cure	0.2	11	S	Hubbard	MI	01004 SH
Dragon Dash	0.0	0	R	Yeacker		
Groveland Road 1000 ft .	0.0	100	R	Yeacker		
Orthopedic Rehab	0.0	1	S	Hubbard	MI	91003 SH
Dexter-Ann Arbor Run	0.7	60	S	Hubbard	MI	90006 SH
Dexter-Ann Arbor Run	-0.6	71	S	Hubbard	MI	92005 SH
Fifth-Third Riverbank Run	-0.1	1	R	Dewey		
Fifth-Third Riverbank Run	-0.6	7	R	Dewey		
National City	0.0	0	R	Dewey	MI	00007 SH
Ambucs Memorial Day	0.0	0	R	Dewey		
Reeds Lake	0.8	2	R	Dewey		
Reeds Lake	1.6	4	R	Dewey		
Meijer Golden Mile	0.0	73	R	Dewey		
Eagle Run	0.0	2	S	Hubbard		
Lincoln Park Police Foot Pursuit	0.0	4	S	Hubbard		
Gaylons Buck Creek	0.0	4	R	Dewey		
Bayshore	0.0	1	R	Dewey	MI	83004 TC
Bayshore	0.0	1	R	Dewey	MI	83001 TC
Tulip City	0.0	0	R	Dewey		
CRIM	-1.2	3	S	Hubbard	MI	99015 SH

distance	COURSE ID	ST	Location
10 km	MI 02024 SH	A	Lansing
20 km	MN 02001 RR	A	Rochester
8 km	MN 02002 RR	A	Twin Cities
21.1 km	MN 02003 RR	A	Moorhead/Fargo
10 km	MN 02004 RR	A	Minneapolis
5 mi	MN 02005 RR	A	Hitterdal
10 km	MN 02006 RR	A	Hitterdal
5 km	MN 02007 RR	A	Bloomington
5 km	MN 02008 RR	A	Minneapolis
5 km	MN 02009 RR	A	Plymouth
12 km	MO 02007 BG	A	Kansas City
21.1 km	MO 02008 BG	A	Kansas City
5 km	MO 02012 BG	A	Lakewood
5 km	MO 02013 BG	A	Kansas City
10 mi	MO 02014 BG	A	Kansas City
5 km	MO 02015 BG	A	Kansas City
5 km	MS 02003 RH	A	Southaven
15 km	MS 02004 RH	A	Southaven
5 km	NC 02012 PH	A	Chapel Hill
5 km	NC 02013 PH	A	Wilson
15 km	NC 02014 PH	A	Durham
10 km	NC 02015 PH	A	Charlotte
5 km	NC 02016 PH	A	Raleigh
8 km	NC 02016 PH	A	Raleigh
10 km	NC 02016 PH	A	Raleigh
12 km	NC 02016 PH	A	Raleigh
15 km	NC 02016 PH	A	Raleigh
10 mi	NC 02016 PH	A	Raleigh
20 km	NC 02016 PH	A	Raleigh
21.1 km	NC 02016 PH	A	Raleigh
42.2 km	NC 02016 PH	A	Raleigh
5 km	NC 02017 PH	A	Wake Forest
5 km	NC 02018 PH	A	Raleigh
10 km	NC 02019 PH	A	Wilson
5 km	NC 02023 PH	A	Charlotte
42.2 km	ND 02011 BG	A	Minot
21.1 km	NH 02002 WN	A	Alton
5 km	NH 02003 WN	A	Wakefield
5 km	NH 02004 WN	A	Portsmouth
5 km	NH 02005 WN	A	Barnstead
8 km	NH 02006 WN	A	Francestown
10 km	NH 02007 WN	A	Rochester
5 km	NH 02008 WN	A	Derry
42.2 km	NJ 02001 DB	A	Long Branch
10 mi	NJ 02007 GAN	A	Fort Dix
5 km	NJ 02008 GAN	A	Wayne
5 km	NJ 02009 GAN	A	Newark
5 km	NJ 02010 GAN	A	Willingboro
5 km	NJ 02011 GAN	A	Medford
5 km	NJ 02012 GAN	A	Hasbrook Heights
5 km	NJ 02013 GAN	A	Metuchen
5 km	NJ 02014 GAN	A	Trenton
10 km	NJ 02017 GAN	A	Woodcliff Lake
1 mi	NJ 02018 GAN	A	Ridgewood
5 km	NJ 02019 GAN	A	Plainfield
5 km	NJ 02020 GAN	A	Cranford
5 km	NJ 02021 GAN	A	Dover Township
5 km	NJ 02022 GAN	A	Montville
5 km	NJ 02023 GAN	A	Livingston
5 km	NJ 02024 GAN	A	Leonardo
5 km	NM 02001 DS	A	Albuquerque
8 km	NY 02004 AM	A	New York
5 km	NY 02008 AM	A	Hamburg
5 km	NY 02009 AM	A	Buffalo
Cal	NY 02010 AM	A	Amherst

DISTANCE	COURSE ID	ST	LOCATION
5 km	NY 02011 AM	A	Williamsville
5 km	NY 02012 AM	A	Bronx
5 mi	NY 02013 AM	A	Avon
10 km	NY 02014 AM	A	Kingston
2.2 mi	NY 02017 AM	A	Buffalo
42.2 km	NY 02018 AM	A	Brooklyn
5 km	NY 02020 AM	A	Fairport
5 mi	NY 02022 AM	A	New York
10 km	NY 02023 AM	A	Bronx
10 mi	NY 02024 AM	A	Greece
5 km	NY 02025 AM	A	Canandaigua
10 km	NY 02026 AM	A	Middletown
5 km	NY 02027 AM	A	Binghamton
5 km	NY 02028 AM	A	Sodus
5 km	NY 02029 AM	A	Clarence
10 km	NY 02030 AM	A	Oswego
2 km	NY 02031 AM	A	Hauppauge
4 mi	OH 02003 MW	A	Hudson
5 mi	OH 02004 MW	A	Avon
5 km	OH 02012 PR	A	Cincinnati
5 km	OH 02015 PR	A	Dayton
5 km	OH 02016 PR	A	Cuyahoga Falls
5 km	OH 02018 PR	A	Bexley
5 km	OH 02019 PR	A	Toledo
1 mi	OH 02020 PR	A	Toledo
4 mi	OH 02001 SH	A	Fremont
5 km	OR 02001 LB	A	Portland
10 km	OR 02002 LB	A	Portland
5 km	PA 02003 WB	A	Philadelphia
5 km	PA 02004 WB	A	Rosemont
5 mi	PA 02006 WB	A	Hershey
42.2 km	PA 02007 WB	A	Pittsburgh
5 km	PA 02008 WB	A	Pittsburgh
5 km	PA 02009 WB	A	Pittsburgh
5 km	PA 02010 WB	A	Pittsburgh
5 km	RI 02002 RN	A	Barrington
5 km	RI 02003 RN	A	Providence
5 km	RI 02005 RN	A	Lincoln Park
5 km	RI 02006 RN	A	Jamestown
5 km	SC 02011 BS	A	Greenville
4 mi	SC 02012 BS	A	Piedmont
10 km	SC 02013 BS	A	Columbia
5 km	SC 02014 BS	A	Summerville
8 km	SC 02015 BS	A	Greenville
42.2 km	SD 02024 PR	A	Deadwood
Cal	SD 02026 PR	A	Brookings
10 km	SD 02027 PR	A	Brookings
4 mi	TN 02004 RH	A	Oak Ridge
8 km	TN 02005 RH	A	Unicoi
5 km	TN 02006 RH	A	Bristol
5 km	TN 02007 RH	A	Powell
5 km	TN 02008 RH	A	Gatlinburg
Cal	TN 02009 RH	A	Knoxville
5 km	TN 02010 RH	A	Memphis
5 km	TN 02011 RH	A	Elizabethton
10 km	TN 02012 RH	A	Knoxville
5 km	TN 02013 RH	A	Knoxville
5 km	TN 02014 RH	A	Ripley
5 km	TN 02015 RH	A	Surgoinsville
5 km	TN 02016 RH	A	Brentwood
5 km	TX 02033 ETM	A	Houston
8 km	TX 02035 ETM	A	Coppell
1 mi	TX 02035 ETM	A	Coppell
5 km	TX 02036 ETM	A	Pasadena
5 km	TX 02037 ETM	A	Houston

COURSE NAME/RACE	m/km DROP	pct SEP		ASURER	REPLACES	
Sneaker Advantage Keiffer Mem.	0.0	0	J	Grandits	NY	97029 AM
United We Run Pezzulo Mem. 5k	-0.1	2	D	Blomquist		
Avon Run for Sight	0.0	2	W	Kehoe		
Kingston Classic 10k	-0.2	7	J	Gilmer	NY	00004 AM
St. Teresa's Comeback Run	-1.7	30	B	Laskowski		
Prospect Park Marathon	-0.1	1	P	Hess	NY	01004 AM
Fairport Village 5k	0.0	1	W	Kehoe		
NYRRC 5 Mile - 99th ST. Finish	0.2	2	P	Hess		
Bronx Community College 10k	0.0	1	P	Hess		
Run for the Hospice 10 Miler	-0.2	4	G	Tillson		
Crosswinds 5k	0.0	2	G	Tillson		
Orange Classic 10k	-0.6	3	B	Cavanagh		
Sgt. Larry Peters Memorial 5k	0.0	0	R	Nichols		
Jason Buyak Memorial 5k	0.0	1	G	Tillson		
Clarence Rotary Run- Remember	0.3	9	J	Grandits		
Harborfest 10k West	0.2	2	D	Oja		
W. Hawrys 2k Racewalk Course	0.0	0	G	Westerfield	NY	01049 AM
Run for Your Life	0.0	3	M	Wickiser		
Eagle Run	0.9	4	M	Wickiser		
Race for the Cure	1.1	9	S	Prescott	OH	01004 PR
Derby Day Dash	0.0	2	F	LaBlanc	OH	01028 PR
Ohio Run for Rett 5k	0.6	4	J	Fisch		
Bexley July 4th - 5k	0.0	0	J	Glaze		
Race for the Cure 5 km	-0.1	12	D	Standish	OH	01049 PR
Race for the Cure 1 Mile	-0.4	24	D	Standish	OH	00023 PR
Camelback	0.0	0	S	Hubbard		
Bridge to Bridge 5k	0.0	0	J	Atherton		
Bridge to Bridge 10k	0.0	0	J	Atherton		
Race for the Cure - 2002	0.1	6	B	Belleville	PA	01011 WB
Rosemont School 5km	0.0	0	B	Belleville	PA	00013 WB
Ava's Friends 5 Mile	-0.2	8	P	Barner		
UPMC Pittsburgh Marathon '02	0.0	0	M	Courtney		
UPMC Heinz Field 5km	0.0	3	M	Courtney		
Race for the Cure Walk - 5km	4.3	17	R	Yurick	PA	01013 WB
Race for the Cure Run-5km	0.6	7	R	Yurick	PA	00002 WB
On Eagles Wings	0.0	3	R	Nelson		
Richmond Square 5k	0.5	2	R	Nelson	RI	01006 RN
Rhody 5k - alternate course	0.0	0	R	Nelson		
Ali Dunn Packer Memorial 5k	2.3	10	R	Nelson		
Steeplechase Road Race	0.0	1	D	White		
Spearman School Road Race	0.0	1	D	White		
USMC Challenge 10k	0.0	0	E	Prytherch		
Legend Oaks 5k Run/Walk	0.0	8	M	Chodnicki		
Safe Harbor 8k	1.6	3	D	White		
Mickelson Trail Marathon	4.3	65	J	Meyer		
Hwy 14 Bypass 1/2 Mile	0.0	100	D	Englund		
3M to Bike Path 10k Course	0.0	2	A	Stockholm		
Mayfest 4 Miler	0.0	0	D	Waters	TN	00008 RH
Run for Richard	0.7	3	D	Rogers		
YMCA 5k	-0.2	1	D	Rogers		
Race for Victims	0.0	6	A	Morgan		
Gatlinburg Senior Olympics	0.6	8	A	Morgan		
Kenilworth dr. 1000 ft . Calibration	0.0	100	A	Morgan		
Run For The Records	-0.1	5	R	Hunter		
Covered Bridge 5k	0.3	8	D	Rogers		
EXPO 10k	1.7	2	A	Morgan		
EXPO 5K	3.4	4	A	Morgan		
Ripley Tomato Festival 5k	0.0	0	B	Saffel		
Run for Technology 5k	-0.3	1	D	Rogers		
Firecracker 5k	0.0	0	J	Zeigler		
Run Wild Sports V. 2	0.0	0	E	McBrayer	TX	00064 ETM
Coppell Classic 8k \& 1 Mile	0.0	2	K	Ashby		
Coppell Classic 8k \& 1 Mile	0.0	0	K	Ashby		
American Legion Post 521-5km	-0.1	2	W	Vanderbrink		
Southbelt-Ellington Chamber SE	-0.1	7	R	Barnhill	TX	00029 ETM

DISTANCE	COURSE ID	ST	LOCATION
5 km	TX 02038 ETM	A	Lake Jackson
21.1 km	TX 02039 ETM	A	Dallas
5 km	TX 02040 ETM	A	Fort Worth
5 km	TX 02041 ETM	A	Fort Worth
5 km	TX 02042 ETM	A	Dallas
5 km	TX 02043 ETM	A	Ingleside
21.1 km	TX 02044 ETM	A	Dallas
5 km	TX 02045 ETM	A	Keller
5 km	TX 02046 ETM	A	Dallas
Cal	TX 02047 ETM	A	San Antonio
5 km	TX 02048 ETM	A	Carrollton
10 km	TX 02048 ETM	A	Carrollton
1 mi	TX 02048 ETM	A	Carrollton
20 km	TX 02049 ETM	A	Dallas
5 km	TX 02051 ETM	A	Sugar Land
5 km	TX 02052 ETM	A	Westlake
5 km	TX 02004 JF	A	Austin
5 km	TX 02005 JF	D	Austin
5 km	TX 02006 JF	A	Austin
10 km	TX 02007 JF	A	Dublin
Cal	UT 02001 DP	A	Salt Lake City
42.2 km	UT 02002 DP	A	Utah Hill
10 km	VA 02001 RH	A	Abington
10 km	VA 02002 RT	A	Alexandria
Cal	VA 02003 RT	A	Bristol
10 km	VA 02004 RT	A	Alexandria
10 km	VA 02006 RT	A	Richmond
10 km	VA 02007 RT	A	Ashland
10 km	VA 02008 RT	A	Norfolk
2 km	VA 02009 RT	A	Manassas
5 km	VA 02011 RT	A	Richmond
5 km	VA 02013 RT	A	Alexandria
3 km	VA 02014 RT	A	Alexandria
5 km	VA 02015 RT	A	Chantilly
5 km	VA 02016 RT	A	Berryville
5 km	WA 02001 BL	A	Seattle
10 km	WA 02001 LB	AV	Ephrata
Cal	WI 02007 JW	A	Nashotah
10 km	WI 02008 JW	A	Oconomowoc
5 km	WI 02021 JW	A	La Crosse
5 km	WI 02037 JW	A	Theinsville
Cal	WI 02043 JW	A	Madison
5 km	WI 02044 JW	A	Madison
5 km	WV 02010 PR	A	Fairmont
15 km	WV 02011 PR	A	Fairmont

COURSE NAME/RACE	m/km pct				REPLACES	
	DROP	SEP		ASURER		
Hospital Run 5k	0.0	9	D	Beatty	TX	96019 ETM
Runaway Train Half-Marathon	0.0	0	K	Ashby		
Monticello Mad Dash	0.4	3	C	Clines		
Fit The Bricks	8.2	96	C	Clines	TX	96032 ETM
Katy Trail 5k	-0.6	8	C	Clines	TX	99081 ETM
Palomas 5k	0.0	0	C	Mericle		
North Trail Half-Marathon	0.0	1	K	Ashby		
Run in the Dark	0.6	5	D	Conniff		
ARTFEST Run for the Arts	0.4	6	C	Clines		
Fort Sam Houston 304.8 meter	0.0	100	M	Johnson		
Carrolton Runners 5k, 1k, 1 Mile	0.0	2	K	Ashby		
Carrolton Runners 5k, 1k, 1 Mile	0.0	0	K	Ashby		
Carrolton Runners 5k, 1k, 1 Mile	0.0	0	K	Ashby		
Memorial Day 20k	0.1	0	K	Ashby		
River Pointe	0.0	0	E	McBrayer		
Run to the Ranch	-0.4	3	D	Conniff		
Chuy's 5k	0.0	0	J	Ferguson	TX	01001 JF
Bun Run 5k	-2.0	20	J	Ferguson	TX	01006 JF
Bun Run II	-2.0	20	J	Ferguson	TX	02005 JF
Dublin Dr. Pepper 10k	0.0	0	J	Ferguson		
Liberty Park 400 metre	0.0	100	L	Smithee		
Mesquite Tri-State Marathon	25.2	78	L	Smithee		
Animal Chase 10k	0.3	3	D	Rogers		
Run vs. Row 10k Challenge	0.0	0	R	Thurston		
North Pinecrest 1056 ft.	0.0	100	P	Young		
George Washington Birthday	0.7	8	R	Thurston		
Ukrop's Monument Ave. 10k	0.1	3	M	George	VA	00005 RT
Ashland Railroad Run 10k	0.0	1	M	George	VA	99011 RT
Elizabeth River Run 10k	0.0	80	M	Robinson		
Bull Run 2km Racewalk Course	0.0	0	R	Thurston		
Race for the Cure 5k	0.0	0	M	George		
May Day 5k	0.0	1	R	Thurston		
Colin Casey 3k	0.0	0	R	Thurston		
WHS 5k Run for Scholarships	0.6	2	R	Thurston		
Barn Again 5k	0.0	0	N	Riemenschneider	VA	00011 RT
Seattle Race for the Cure	0.0	0	T	Cotner	WA	00011 MR
Ephrata Canal Caper	0.9	2	L	Barrett	WA	90003 MR
Nashota - Mission Ave. 1000 ft .	0.0	100	K	Gilgenbach		
Rogers Mem. Hospital 10k	0.0	1	K	Gilgenbach		
Eagle 5k	0.0	1	P	Plinske		
Freedom Run	0.0	2	K	Gilgenbach		
Madison SW Bike Path 1000 ft .	0.0	100	T	Aten		
Madison Race for the Cure	0.0	5	T	Aten	WI	01041 JW
Run to Read 5k	0.0	2	J	Glaze		
Run to Read 15k	0.6	1	J	Glaze		

Foreign

10 km	PUR 02022 PR	A	Toa Baja
28.8 km	PUR 02028 PR	A	San German
48.9 km	PUR 02028 PR	A	San German

Abraham Rosa 10k	0.3	6	P	Zapata	PUR 01035 PR	
Contra el Reloj (bicycle course)	0.0	11	P	Zapata		
Contra el Reloj (bicycle course)	0.0	0	P	Zapata		

Renewed

12 km	CA 92003 TK	AV02 San Francisco
Cal	GA 91022 WN	A02 Columbus
10 mi	IA 89008 MF	A00 Des Moines
10 km	KY 87039 KY	A02 Ashland
10 km	ME 86005 GN	A02 Freeport
5 km	OH 90001 PR	A02 Worthington
5 km	TX 86015 ETM	A02 Houston
5 km	TX 92042 ETM	A02 Deer Park

San Francisco Bay to Breakers	-0.1	94	T	Knight
Front Ave. 1525' 9 3/4" Cal.	0.0	100	D	Koepfer
Capital Pursuit 10 Mile	0.0	3	M	Movic
Ashland Summer Motion 10k	0.0	1	K	Bowling
LL Bean 4th of July 10k	-0.9	3	G	Nelson
Spring Challenge	0.0	3	P	Riegel
Heights 5k Fun Run	0.0	0	J	May
Independence Run	0.0	0	E	McBrayer

Copies of these certificates available from: (Send course name \& ID number and \$2.00) Each certificate inclides a course map.
 Karen Wickiser - Course Registrar
 2939 Vincent Road
 Silver Lake, OH 44224-2916

Phone 330-929-1605
FAX 509-351-5383
Mikewickiser@neo.rr.com

Measurement News Subscriptions

George Pollock inquired about how to obtain printed, mailed copies of Measurement News. MN can be obtained by mail in the US by sending $\$ 20$ to:

```
Pete Riegel
3354 Kirkham Rd
Columbus, OH 43221
```

A faster way is to download the current issue from the RRTC web page. www.rrtc.net
It's free, and I'd much prefer people to do this rather than send me their money. In addition, the online version is available about a week ahead of the printed version.

All of the 114 issues of MN published since 1982 exist on a set of 3 CD's, with an index, in .pdf (Adobe Acrobat) format. Around 3200 pages in all. Anybody wanting a set can have one for $\$ 30$. It will be current up to the last issue published.

While I accept paid subscriptions I am not anxious to do so. When I started MN, it was simply a round-robin letter to others in the game, and the idea was that people would contribute their ideas, in order to further accurate measurement. MN existed, unfunded, on its own before it became the RRTC newsletter.

When it became the RRTC newsletter, funding became available from USATF, and MN began to pick up the publication of the lists of newly-certified courses which NRDC used to publish in their newsletter, "NRDC News," before NRDC was incorporated into TACSTATS, now Road Running Information Center.

As the editor became more internationally involved, MN was sent to selected foreign measurers, and when IAAF and AIMS set up their system of international measurement administration, Measurement News began to be sent to all of the "A" and "B" level measurers. The foreign distribution is funded by IAAF, domestic by USATF.

When I was RRTC Chairman, I was often buttonholed by people at the USATF Annual Meeting and asked to send them Measurement News. I almost always did this. In addition, I added some people to the list who, I was informed, were politically important.

Every so often I look at the mailing list, and if the recipient has not sent me something lately, I just drop them from the list without notification. Exceptions are US certifiers, IAAF/AIMS measurers, and paid subscribers.

I view thoughtful articles about measurement as being worth far more than money.
At bottom, I view MN as an interactive tool to improve measurement. From all the people who receive it, I receive very little in return. This is not satisfying to me, as I never intended it to be a monologue. Over the years we have been very fortunate to receive submissions from a variety of people, and I have been immensely grateful for this, as these submissions have advanced our science. A look at the index will identify these valued contributors.

Lately, however, submissions to Measurement News have begun to decrease, and sometimes I am hard-pressed to find material. Part of the reason is that MNForum has replaced MN as the forum of choice. This is good, as discussion is timely and immediate. Still, it does leave me in a quandary. Without material, the printed version may become simply a list of certified courses, a map of the month, and assorted boilerplate. If this is all it is to be, I'd just as soon save myself the effort. Perhaps the time has come to fold the tent.

Pete Riegel

PUZZLE OF THE MONTH

Music is much about mathematics. A perfect octave, for example, is two notes (say C and the lower C) whose frequencies are precisely in a ratio of $2: 1$. When played together they sound pure. If they are very slightly out of tune, however, the two frequencies do not stay together but drift in and out of phase, causing the sound level to increase and decrease accordingly. To the ear this causes "beats" to be heard. A musical perfect fifth, say G and the C below it, consists of two notes whose frequencies are in the ratio of $3: 2$. Note, you don't need to be a musician to solve this puzzle, but it might help if you have a keyboard or a picture of one if you are not. A fifth such as the C-G combination spans five white notes. More generally, a fifth always goes up 7 half steps, spanning eight.

One might attempt to tune a piano or a rank of organ pipes by starting with a tuning fork, set at middle C for example, then tuning the G above it by removing any beats. One could continue this tuning by fifths, going from G to D, then D to A, etc. Finally one would come back to a C. (Actually you would run out of keys on the keyboard first, so you periodically drop down a perfect octave, and stay in the middle of the keyboard. This doesn't materially affect the mathematics.)

The question is, would the final C be in tune with the starting C , that is, within one or more perfect octaves? If not, would the frequency of the final C be sharp (higher) or flat (lower), and by what percentage relative to the perfect octave frequency.

Keyboard courtesy of your Editor, who has not yet figured out the answer.

At left we see Jean-Francois Delasalle (France, at left) with Pier Luigi Omodeo (Italy) at the measurement of "Stramilano 2002" half marathon. Expected are 50 elite runners, 3000 others, and 50,000 runners in the 15 km fun race.

PUBLICATIONS AVAILABLE FROM RRTC

Printed Course Lists - You can obtain a list of certified courses for any state. Send $\$ 2.00$ for any state list. You will receive a list that is current as of the last published Measurement News. If you wish the courses to be sorted in a special way, let us know. Otherwise it will be sorted by distance as the list appears in MN. You can obtain other specially-sorted lists - for instance, you might want to have all the 5 k 's in IL, IN, and MO. It can be done. Just say what you want. If you are online, lists can be sent that way. Contact Mike Wickiser at MikeWickiser@neo.rr.com

Attention RRTC certifiers: Your lists are free. Any time you want one let us know. You can mark up any mistakes and we will correct it and send you a new copy.

Web Page Access to Course Lists:The complete list can be downloaded from the RRTC website at http://rrtc.net/download/ Also, try the certified course Search Engine at the USA-LDR website http://www.usaldr.org/

Individual Certificates - These may be obtained by sending the course number and $\$ 2.00$ per course desired. SEND THE
COMPLETE ID, INCLUDING PREFIX AND SUFFIX
LETTERS, Thus: CA 92057 RS. Send course name, length and location as well. If you are thinking of hiring a measurer, this is an excellent way to see the sort of work you can expect. In addition, you may wish to check out a course you intend to run. Bring the map to the course and see if the race director got it right!

Above material may be obtained from: Mike Wickiser - 2939 Vincent Rd. - Silver Lake, OH 44224-2906

Measurement Calculation Computer Program by Bob Baumel, version 1.2 for Macintosh or IBM PC. This software can be downloaded for free from the RRTC website at
http://www.rrtc.net/download/ or Bob will distribute it by email attachment (send requests to webmaster@ rrtc.net) or on floppy disks (send blank, formatted diskette and stamped return mailer to Bob at: 129 Warwick Road, Ponca City OK 74601-7424). Be sure to specify Mac or PC version.

Electronic Certificate Templates (available to Certifiers only), now in an Adobe Acrobat format which isn't tied to any word processor. Requires Acrobat or Acrobat Reader 4.0 or greater (Current Acrobat Reader may be downloaded for free from www.adobe.com). The template allows you to fill in certificates on the computer and print them. Available in both FS and non-FS version. Distributed by Bob Baumel by email or diskette [same addresses as for Measurement software]. Bob can customize the template with certifier's personal info at the bottom (name, address, phone, etc.) so you can avoid retyping it every time (Be sure to specify exact ID text desired when requesting a template).
Online course measurement book, edited by Bob Baumel. It's a revision of the one you can buy from USATF, but the basic procedures have not changed. Available at: http://www.rrtc.net
Course Measurement Procedures - the Bible of course measurement. Complete instructions for measuring courses for USATF certification. The same procedures are now used for IAAF and AIMS courses. $\$ 9.00$ postpaid. Available from: USATF - Book Order Dept. - PO Box 120 Indianapolis, IN 46206
Course Measurement Video - a concise 17 minute introduction to course measurement, intended as a supplement to Course Measurement Procedures. See how it's done! Version 2 sells for $\$ 10$ but there are still a few copies of the original version available for
\$7.50. Send to: Tom McBrayer - 4021 Montrose - Houston, TX 77006-4956.

OTHER PUBLICATIONS AND EQUIPMENT

Road Race Management is a monthly newsletter providing race organizing ideas and news for race directors. $\$ 97$ per year from: Road Race Management - 4904 Glen Cove Pkwy - Bethesda, MD 20816 Phone: 301-320-6865 Fax: 301-320-9164

Jones/Oerth Counters - Write to: Paul Oerth - 2455 Union St - Apt 412 - San Francisco, CA 94123. Phone: 415-346-4165 Fax 415346 0621 . Email: Poerth@aol.com. US Price is $\$ 70$ for the 5 digit model, $\$ 80$ for the 6 digit model, postpaid. Foreign price is $\$ 75 / \$ 85$ plus postage. Foreign orders shipped by airmail. Visa, MasterCard, American Express cards accepted. Note: Payment in advance is required.
RunScore - The flagship of IBM-style finish line programs. For information contact: Alan Jones - 3717 Wildwood Dr - Endwell, NY 13760. Or check it out on the internet at: www.runscore.com

Apple Raceberry JaM - Race management software for Macintosh and Windows. Check it out on the Internet at
http://www.raceberryjam.com or call Jack Moran at (952) 920-0558.

TOPOGRAPHIC MAPS

USA topographic maps are available from:
U. S. Geological Survey 303-202-4200

USGS Map Sales
PO Box 25286, Bldg 810
Denver Federal Center
Denver, CO 80225
Delivery will be made in approximately 4 weeks. Ask for latest price.
Maps can be located and ordered online at: http://www.usgs.gov
Maps can be obtained in just a few days from:
Map Express - PO Box 280445 - Lakewood, CO 80228-0445
1-800-MAP-00EX (1-800-627-0039)
Maps can be located and ordered online at:
http://www.mapexp.com
Topo Maps on CD-ROM - 3-D TopoQuads includes authentic USGS 7.5-minute quadrangle maps, assembled into one seamless database

See an interactive online demo at http://www.delorme.com
Also - check out Street Atlas USA from the above - it's a seamless street map of the whole USA at a decent price.

USGS TOPOGRAPHIC MAPS ONLINE - FREE

Maps.Com has a section where you can click on to all USGS maps, free. This can be very handy for obtaining accurate elevation information.
Check out: http://www.maps.com

Chairman: Mike Wickiser - 2939 Vincent Rd - Silver Lake, OH 44224
Phone/fax: 330-929-1605 email: MikeWickiser@neo.rr.com

REGIONAL CERTIFIERS - CONTACT THESE PEOPLE FOR CERTIFICATION INFORMATION

AK -

AL -
AR - Don Potter - \#7 Kali Court - Conway, AR 72032
AZ - E. T. McBrayer - 4021 Montrose - Houston, TX 77006-4956
CA - Ron Scardera - 5660 Valley Oak Dr - Los Angeles, CA 90068
CO - Dave Poppers - 5938 S Franklin St - Centennial, CO 80121
CT - David Reik - 87 Wood Pond Road, West Hartford, CT 06107
DC - Robert Thurston - 13 Kennedy St NE - Washington, DC 20011
DE - Gene Newman - 232 Heather Croft - Egg Harbor Twp, NJ 08234
FL - Doug Loeffler - 1399 W. Royal Palm Rd - Boca Raton, FL 33486
GA - Woody Cornwell - 1701 Violet Way - Dalton, GA 30720
HI - Peter Riegel - 3354 Kirkham Rd - Columbus, OH 43221-1368
IA - Michael Franke - 3824 51st St - Des Moines, IA 50310
ID - Michael Renner - East $160619^{\text {th }}$ Ave - Spokane, WA 99203
IL - Jay Wight - 4556 Opal Drive - Hoffman Estates, IL 60195-1185
IN - Jim Gerweck - 156 Fillow St - Norwalk, CT 06850
KS - Bill Glauz - 2704 W. 137th St. - Leawood, KS 66224-4529
KY - Peter Riegel - 3354 Kirkham Rd - Columbus, OH 43221-1368
LA - John Ferguson - 3026 Sesbania - Austin, TX 78748-1912
MA - Ray Nelson - 3524 West Shore Road - Apt. 705 - Warwick, RI 02886
MD - John Sissala - 120 Evans St - Rockville, MD 20850
ME - Wayne Nicoll - 31 Kilcare Rd - Andover, NH 03216
MI - Scott Hubbard - 1453 W. Hill Rd. - Flint, MI 48507
MN - Rick Recker - 19 South 1st Street \#2203 - Minneapolis, MN 55401
MO - Bill Glauz - 2704 W. 137th St. - Leawood, KS 66224-4529
MS - Bob Harrison - 1736 Meadow Oak Court - Montgomery, AL 36117-6830
MT - George Tuthill - 810 S 7th Ave - Bozeman, MT 59715
NC - Paul Hronjak - 4413 Pinehurst Drive, Wilson, NC 27896
ND - Tom Benjamin - PO Box 280715 - San Francisco, CA 94128
NE - Karl Ungurean - 203 E. Denison - Davenport, IA 52803
NH - Wayne Nicoll - 31 Kilcare Rd - Andover, NH 03216
NJ - Gene Newman - 232 Heather Croft - Egg Harbor Twp, NJ 08234
NM - Don Shepan - 3007 Ronna Dr - Las Cruces, NM 88001
NV - Bill Callanan - 5209 Copper River Ave - Las Vegas, NV 89130
NY - Amy Morss - 248 Spring Hill Rd., Sharon, NH 03458
OH - Peter Riegel - 3354 Kirkham Rd - Columbus, OH 43221-1368
OK - Bob Baumel - 129 Warwick Road - Ponca City, OK 74601-7424
OR - Lee Barrett - 3027 NE 20th Ave - Portland, OR 97212
PA - Bill Belleville - 2902 Morris Road - Ardmore, PA 19003
RI - Ray Nelson - 3524 West Shore Road - Apt. 705 - Warwick, RI 02886
SC - Brian N. Smith - 1465 Winton Rd - Mount Pleasant, SC 29464-3921
SD - Peter Riegel - 3354 Kirkham Rd - Columbus, OH 43221-1368
TN - Bob Harrison - 1736 Meadow Oak Court - Montgomery, AL 36117-6830
TX - E. T. McBrayer - 4021 Montrose - Houston, TX 77006-4956
UT - Dave Poppers - 5938 S Franklin St - Centennial, CO 80121
VA - Robert Thurston - 13 Kennedy St NE - Washington, DC 20011
VT - Wayne Nicoll - 31 Kilcare Rd - Andover, NH 03216
WA - Bob Langenbach - 4261 South $184^{\text {th }}$ St - SeaTac, WA 98188
WI - Jay Wight - 4556 Opal Drive - Hoffman Estates, IL 60195-1185
WV - Robert Thurston - 13 Kennedy St NE - Washington, DC 20011
WY - Tom Knight - 307 Dartmouth Ave - San Carlos, CA 94070
FOREIGN - Peter Riegel - 3354 Kirkham Rd - Columbus, OH 43221-1368

Telephone
907-279-2773
256 881-9326
501-796-4081
713-523-5679
323-467-7750
303-795-9743
860-677-2724
202-726-1518
609-641-0645
561-391-2880
706-226-5207
614-451-5617
515-276-3140
509-535-2822
847-359-4598
203-838-2748
913-402-1501
614-451-5617
512-282-4175
401-737-2416
301-340-8107
603-735-5721
810-234-8993
612-375-0805
913-402-1501
334-279-5517
406-587-2289
252-237-8218
415-382-6451
563-324-2250
603-735-5721
609-641-0645
505-524-7824
702 656-3741
603-924-4164
614-451-5617
580-765-0050
503-284-2809
610-649-4278
401-737-2416
8438815566
614-451-5617
334-279-5517
713-523-5679
303-795-9743
202-726-1518
603-735-5721
206-433-8868
847-359-4598
202-726-1518
650-594-9406

614-451-5617

> Email address uphere@alaska.net jjdehaye@yahoo.com donp@tcworks.net mametm@aol.com rscar@pacbell.net dpoppers@earthlink.net Davidreik@aol.com Thurret@aol.com newmangc@comcast.net DougLoeffler@aol.com ewcornwell@cs.com Riegelpete@aol.com Mfranke@worldnet.att.net

> Jaywight@earthlink.net zgerweck@aol.com wglauz@kcnet.com Riegelpete@aol.com fergusonj@hayscisd.net ride9336@ride.ri.net sissala@starpower.net nicoll57@webtv.net Runningshorts@aol.com rick_recker@hotmail.com wglauz@kcnet.com rnharrison@knology.net tuthill@physics.montana.edu hronjak@simflex.com benjtr@slip.net UngureanK@aol.com nicoll57@webtv.net newmangc@comcast.net Drshepan@aol.com Callan@lvcm.com Amorss@koko.mv.com Riegelpete@aol.com bobbau@earthlink.net cudapdx@attbi.com Wjbellevil@aol.com ride6887@ride.ri.net Bnewbatt@awod.com Riegelpete@aol.com rnharrison@knology.net mametm@aol.com dpoppers@earthlink.net Thurret@aol.com nicoll57@webtv.net boblang@wolfenet.com Jaywight@earthlink.net Thurret@aol.com Tdk@stanford.edu

Riegelpete@aol.com

[^0]: Pattl Muck covers running for the Chronicle. Her notebook appears on Thursdays. Leave a message or fax her at 281-344-8978 or send θ-mails to runningnotes@aol.com.

