Uphills, Downhills and the Boston Marathon
by Bob Baumel

Some critics of TAC's new Drop/Separation rule have argued that although
the Boston Marathon drops 3.7 meters per kilometer (which exceeds the

2 mflkm limit of the old rule as well as the 1 m/km lmit in the new rule),
the uphills on this course, especially the famed “Heartbreak Hill,” have such
a devastating effect as lo completely wipe out any aid provided by the drop.
I will attempt here to evaluate this argument quantitatively. [ conclude
that, even under very conservative assumptions, Boston's downhills do aid
performances considerably more than its uphills hurt them.

The mathematical framework for discussing this type of question was pro-
vided by my article in Jan "89 Measurement News entitled “Hill Effect to
Second Order.™ | began that article with a race director's hypothetical
claim: “Sure my course drops 500 meters, bul it's really tough because it
climbs 1000 meters before falling 1500 meters!™ Unfortunately, it's likely
that few people read all the way through that article, due to my use of
integral calculus (although the math really wasn't as involved as in my
subsequent “Physiological Model™ article in Nov 89 MN).

One person who obviously did thoroughly read and understand my.Jan "8%
article was Alan Jones, who wrote a follow-up article in July "8% MN with
the same title: “Hill Effect to Second Order”. Alan applied my equatiens to a
local 20 kmn course, and found that the results agreed almost exactly with the
actual difference between his race times on this hilly 20 km course and on a
different (flat) 20 km course. This “experiment of one” doesn’t really prove
anything, but does lend credibility to the equations.

Unfortunately, neither Alan nor | applied the equations to any majer courses
such as Beston, (Applying the squations to any given course requires a very
painstaking process of data collection from topographic maps.) [ did urge in
my Jan '89 article that the data be gathered for the Boston and 5t. George
Marathons. And Alan announced in his July "89 article that he would try
doing it for Boston. | assume that Alan just couldn't muster the energy to
pare over the topo maps to oblain the 42 kilometers of data,

Just a few days ago, Pete Riegel reminded me that detailed topographic data
for the Boston Marathon already exists in an old Runner’s Woarfd booklet
called The Bosfon Marathen. As it happens, 1 already owned a copy of this
booklet, although [ had completely forgotten about it. (Pete has clearly been
arcund the running scene longer than | have, as he has the original 1972
edition of this booklet, while | have only the revised 1974 edition.)

The topographic data in this old Ruaners World booklet was obtained by
Rick Levy for the 1967 Boston course, which wasn't exact)y the same as the
present course. (That 1967 course dropped 3.5 m/km while the present course
drops 3.3 mfkm.) But it was probably close enough that we can use it to
investigate the extent to which uphills cancel the downhills.
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The following diagram was obtained by digitizing the profile chart on page 18
of that old Punner’s World booklet, and feeding the result into the program 1
wrote at the time | prepared my Jan '8% Measurement News arlicle;
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The legend on this diagram includes the course's Net Drop and its calculated

“Steepness Integral,” which are quantities needed in the equation presented

in my Jan ‘89 MN article. | will now review that equation, which can be
written in the form:

Loy = L = AXND + BxSl (1)
where
L  is the course's acfual length.

Loty is the course's “effective™ length; i.e., the length of the
perfectly flat course that would produce times identical
to those run on the actual race course.

ND is the course's Net Drop; i.e., the net decrease in eleva-
tion from Start to Finish (negative in case of net rise).

Sl is the quantity 1 call the "Steepness Integral,” which
measures the extent to which the cours=e contains steep
grades, (See Appendix for mathematical definition,)

A and B are numerical coefficients whose values may be
derived from exercise physiology exeriments (nvolving
oxygen uptake measurementis on inclined treadmills.
The actual method of deriving A and B from such data
was explained in my Nov '89 MN article.

What does Equation (1) mean? The three terms on the right-hand-side of
this equation can be thought of as “zeroth order”, “first order”, and “second



order”™ lerms respectively. Let me Iry %o explain these three successive
levels of approximation:

In the "gsroth order”™ approximation, we neglect both the “A" and "B” terms
from the right-hand-side of the eguation, so we are left with only;

Lesg = L
which says that the effective length Is equal to the actual length. In other
words, the hills have no effect at alll In a certain sense, this lan't too bad
an approximation: In the old days when most race courses were still being
measured by car odometer, runners knew that they couldn't compare times
between one course and another, and they often blamed this on variations in
terrain. Now that numerous courses have been measured accurately, we
can see that meosf of the variations between those old courses resulted from
erraors in distance measurement—not from the differences In hillineas!

For a “first order”™ approximation, we include the “A" term from the equa-
tion, but continue to neglect the “B" term. This yields:

Lesr = L - AXND

which says that the effect of hills depends only on the net drop from start to
finish, but not on the detailed pattern of uphills and downhills. Thus, any
course with egual uphill and downhill (i.e., no net drop) is equivalent o a
flat course of the same length. And any nel decrease in elevation reduces the
effective length (i.e. makes the course faster), no matter how many hills the
course may have between [ts start and finish. This is actually a prlttp good
approximation if the course has only genfle slopes; In that case, the energy
saved in descending one meter does almost compleiely cancel the extra energy
used in climbing one meter,

But if the course has aufficiently steep grades, we need alf fhree terms from
equation (1). This Is the "second order” approximation, Whereas the "A"
term expresses the notion that equal uphills and dewmnhills exactly cancel
each other; the "B" term Indicates the residual amount by which the uphills
and downhills don® cancel each other. The Steepness Integral 31 indicates
the extent to which the course has steep grades. A large Sl always Increases
the effective length; i.e., makes the course slower. The following dlagrams
{llustrate three courses, all with the same net drop:
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Course | descends unilformiy and gently from start to finish, so its 51 would
be very small, The "first order™ approximation would be very accurate for
course I; Le., the effect of the downhill can be calculated accurately knowing
anly the course's net drop,

The drop in course 11 is not uniform, but is concentrated in one steep descent
somewhere in the middle. Because of this steep grade, course 11 has a bigger



Steepness Integral than course I, and would therefore produce slower Limes.
But as course 11 |s still a totally downhill course, it's surely a lot faster
than a flaf course of the same length. In all likelihood, the steepness effect
(*B" term) for course 11 would only slightly reduce the aid calculated from
the net drop ("A" term).

Course 111 has lots of steep uphills and downhills, so its Sl would be much
bigger than for courses | and 11, In this case, the Increased difficulty due to
the steepness factor (“B” term) would eliminate a large portion of the ald
caleulated from the net drop ("A* term). In fact, it cow/d happen that the
“§" term completely overwheims the "A™ term, so that course III {in spite of
its net drop) might actually be slower than a flat course of the same length.

Mew that I've explained all the preliminaries, let’s return to the Boston
Marathon. From the profile diagram presented earlier, we already know lis
Net Drop and Steepness Integral (at least for the 1967 course); namely, ND=
146.3m and S1=10.5m. All we need now are values for the coefficients A
and B In my Jan ‘89 MN article, 1 used A=4.5 and BE=5 Substitution af
these values In equation (1) yields (with all distances in meters):

Letg = 42195 - 658 + 52
= 42195 - 606
= 41589

Thus, the steepness term eliminates only about 6% of the aid predicted from
the net drop, and the overall effect of the hills is equivalent to shortening the
course I:Eﬁ}mutrn (for a time reduction of 1min 50sec at world-class speed
of 5.5 mJs).

But perhaps I'm being too hard on Boston, as the values of A and B are really
guite uncertain (especially the value of Bﬁ. My wvalues in the Jan *89 article
were derived from the article: R. Margaria, P. Cerretelli, P. Aghemo, G. Sassi,
=Energy cost of running,* Journal of Applied Physlology, V. 18, 1963, p. 367.
Actually, | noted that from Margaria's data, | had derived estimates of B
ranging from 4 to 10, but | considered B=5 as a “best™ estimate.

While the above-mentioned article of Margaria et. al. Is probably the classic
reference on energy cost of uphill and downhill running, it is still desirable
to check other (independent) data on the 3 . Recently, Jack Moran sent
me excerpts from Phil Hensan's Fh.D. thesis (Indiana University) containing
data for inclined treadmill running. From Henson's data, 1 derived values:

& =5.6 (which is slightly higher than | obtained from Margaria’s data) and
B=18.2 (which is & Jof higher than my estimate from Margaria). Henson's
experiments actually used a few more runners than Margaria’s, but | hawve
somewhat greater confidence in my A& and B estimates from Margaria's data,
which covered a greater range of slopes.

In any case, to be as generous as possible to supporters of Boston, suppose we
re-calculate its effective length using the smallest possible value for A, and
largest possible value for B. In particular, let's use A =4, which is equiva-
lent to Pete Riegel's estimate of the slope effect in Sept ‘89 MN (page 6), and
B=18.2 which | derived from Phil Henson's data. With thess figures, we
obtain:



Lags 42195 - 585 + 191

= 42195 - 39

= 41801
By this calculation, the steepness effect would eliminate about 53% of the aid
prodicted from net and the overall hill effect Is equivalent to shortening

the course 3%4 meters (equivalent time reduction: 1 min 12s). For reference,
| note that an effective shortening of 394 m would be about 2.7 times as great
as the shortness found in validating the 1981 New Yeork Marathon,

In spite of all this analysis, some delenders of Boston might still Lry arguing
that Hearibreak Hill has a far more devasiating effect than Indicated by its
steepness, because of its particular location at a point where many mara-
thoners “hit the wall.” In response, | point out that a runner in top condi-
tion who is having a peak performance (the sort of performance that sets
records) dogs mof *hit the wall.* In an optimally-paced performance, accor-
ding to my Nov 89 MN article, the runner spesds up on the downhills, and
slows down on the uphills, just enough to malntain constant energy output,
and is not fully spent until the very end of the race.

Appendin: Definition of Steepness Integral
The “Steepness Integral® is defined as

, sl = j[ﬁi]iu (a1)

where "x" (restricted to the interval 0 x <L) denoles distance along the
course; and "y~ is the elevation at position x. The derfvative “dyfdx” is the
course's_local slope al position x. Since the integrand consists of the sguared
slope, 51 is always non-megaiive. The biggest contributions to this integral
come from the regions of steepest slope (either uphill or downhill), Hence,
the name “Steepnesa Integral.”

My legend on the Boston profile diagram includes the course's “Total Climb”™
In addition to its net drop and steepness integral. The Total Climb, denoted
“TC*, is a quantity popularized by Ken Young, and Is found by adding up all
the uphill elevation changes on the course. It can be¢ shown rigorously that a
course's 31, TC and ND always satisfy the inequality:

2
gl 's [zx'rl:L+ ND) (a2)

In practice, the left side of (A2) is usually about 2.5 times as great as the
right side, which suggests that we might try replacing equation (1) with:

2
legt = L - AXND + 2,58 {hTr.:;HD} (A%)

which would be very handy because it requires a lot less detailed analysis of
the topographic maps to figure a course’s TC than to compute its 51,




